BNC Protects H9c2 Cardiomyoblasts from H2O2-Induced Oxidative Injury through ERK1/2 Signaling Pathway

نویسندگان

  • Fangbo Zhang
  • Bin Huang
  • Ye Zhao
  • Shihuan Tang
  • Haiyu Xu
  • Lan Wang
  • Rixin Liang
  • Hongjun Yang
چکیده

Buchang naoxintong capsule (BNC) is a traditional Chinese medicine approved for the treatment of cerebrovascular and cardiovascular diseases. However, little is known about the specific protective function or mechanism by which BNC protects against myocardial injury. This research was designed to investigate the cardioprotective effects of BNC in vitro model of hydrogen peroxide (H2O2)-induced H9c2 rat cardiomyoblasts. BNC intestinal absorption liquid was used in this study instead of drug-containing serum or extracting solution. Our study revealed that BNC preconditioning enhanced antioxidant function by increasing the activities of total-antioxygen capacity, total-superoxide dismutase, and catalase and by decreasing the production of reactive oxygen species and malondialdehyde. BNC preconditioning also activated extracellular signal-regulated kinases (ERK1/2) and inhibited apoptosis-related proteins such as poly ADP-ribose polymerase (PARP) and caspase-3. Additionally, preincubation with BNC reduced intracellular Ca(2+) concentration, improved mitochondrial membrane potential, and decreased the apoptosis rate of H9c2 cells in a dose-dependent manner. These data demonstrated that BNC protects H9c2 cardiomyoblasts from H2O2-induced oxidative injury by increasing antioxidant abilities, activating ERK1/2, and blocking Ca(2+)-dependent and mitochondria-mediated apoptosis. Based on our results, the potency of BNC for protecting H9c2 cells from oxidative damage is comparable to that of trimetazidine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exogenous hydrogen sulfide protects H9c2 cardiac cells against high glucose-induced injury by inhibiting the activities of the p38 MAPK and ERK1/2 pathways.

Hyperglycemia is a risk factor for the development of diabetic cardiovascular complications, which are associated with the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. In this study, we demonstrate the inhibitory effects of exogenous hydrogen sulfide (H₂S) on the activation of the MAPK pathway. The aim of the present study was to determine whether exogenous H₂S p...

متن کامل

Discovering Antioxidant Molecules in the Archaea Domain: Peroxiredoxin Bcp1 from Sulfolobus solfataricus Protects H9c2 Cardiomyoblasts from Oxidative Stress

Peroxiredoxins (Prxs) are ubiquitous thiol peroxidases that are involved in the reduction of peroxides. It has been reported that prokaryotic Prxs generally show greater structural robustness than their eukaryotic counterparts, making them less prone to inactivation by overoxidation. This difference has inspired the search for new antioxidants from prokaryotic sources that can be used as possib...

متن کامل

Levocarnitine Protects H9c2 Rat Cardiomyocytes from H2O2-induced Mitochondrial Dysfunction and Apoptosis

BACKGROUND Although the protective effects of levocarnitine in patients with ischemic heart disease are related to the attenuation of oxidative stress injury, the exact mechanisms involved have yet to be fully understood. Our aim was to investigate the potential protective effects of levocarnitine pretreatment against oxidative stress in rat H9c2 cardiomyocytes. METHODS Cardiomyocytes were ex...

متن کامل

Protective effect of angiotensin-(1-7) against hyperglycaemia-induced injury in H9c2 cardiomyoblast cells via the PI3K/Akt signaling pathway

Angiotensin-(1-7) [Ang-(1-7)], a heptapeptide mainly generated from cleavage of AngⅠ and AngⅡ, possesses physiological and pharmacological properties, including anti‑inflammatory and antidiabetic properties. Activation of the phosphoinositide 3-kinase and protein kinase B (PI3K̸Akt) signaling pathway has been confirmed to participate in cardioprotection against hyperglycaemia-induced injury. The...

متن کامل

Catalpol Protects Pre-Myelinating Oligodendrocytes against Ischemia-induced Oxidative Injury through ERK1/2 Signaling Pathway

The vulnerability of pre-myelinating oligodendrocytes (PreOLs) to ischemic injury plays an important role in the pathogenesis and progression of perinatal white matter injury. Although oxidative stress is thought to be a major pathogenic mechanism predisposing the PreOLs to injury, no effective therapies have been identified to date. The present study aimed to investigate the direct protective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013